Tag Archives: space

Details of 1st private manned Mars mission revealed

Details of 1st private manned Mars mission revealed

By Mike Wall

Published November 21, 2013

  • inspiration-mars-spacecraft

    An artist’s illustration of the Inspiration Mars Foundation’s spacecraft for a 2018 mission to Mars by a two-person crew. The private Mars mission would be a flyby trip around the Red Planet. (INSPIRATION MARS FOUNDATION)

  • inspiration-mars-spacecraft-concept

    An artist’s depiction of the planned Inspiration Mars spacecraft to send a married couple on a flyby mission around Mars.(INSPIRATION MARS)

  • inspiration-mars-mission-concept

    This image from an Inspiration Mars fact sheet shows the nonprofit space exploration group’s vision for its planned two-person Mars flyby mission, which it hopes to launch between 2017 and 2018. (INSPIRATION MARS)

  • inspiration-mars-mission-spacecraft-concept

    An artist’s illustration of the manned spacecraft for the Inspiration Mars mission to send two astronauts on a Mars flyby mission in 2017-2018. (INSPIRATION MARS)

A nonprofit space exploration group revealed exactly how it plans to launch two married astronauts on an ambitious manned flyby mission to the Red Planet by early 2018, a scenario that would involve NASA and federal funding along with a healthy dose of the pioneering spirit.

The Inspiration Mars project — which is led by multimillionaire Dennis Tito, the world’s first space tourist — hopes to partner with NASA, using much of the space agency’s equipment and expertise as well as an infusion of federal money to get off the launch pad by early January 2018.

“Perhaps several hundred million dollars in new federal spending can make this mission happen,” Inspiration Mars officials wrote in a report, released Wednesday, that outlines the mission’s proposed architecture. “We now call on our nation’s leaders to seize this singular opportunity to begin human exploration of the solar system and affirm America’s leadership throughout the world.” [Private Mission to Mars Explained (Infographic)]

‘Perhaps several hundred million dollars in new federal spending can make this mission happen.’

– Inspiration Mars officials

The proposed “Mission for America” would launch a married couple toward the Red Planet sometime between Dec. 25, 2017 and Jan. 5, 2018, to take advantage of a rare favorable alignment of Mars and Earth.

The two astronauts would not land on the Red Planet but would cruise within 100 miles of its surface before heading back home, eventually touching down on Earth in May 2019 after spending 501 days in space.

The flyby mission will help inspire the next generation of researchers and engineers, preserving America’s competitive edge in science and technology, Inspiration Mars officials say. It should also lay the foundation for even more ambitious manned exploration of the solar system, they add.

“There’ll be a lot of science return and techology return,” Taber MacCallum, Inspiration Mars’ chief technology officer, told reporters during a teleconference today. “We will, I think, sort of break the sound barrier for going to Mars and back, enabling a range of missions to occur in the future.”

The current mission plan, as outlined in the report, calls for using NASA’s Space Launch System mega-rocket (SLS), which is in development with a first flight slated for late 2017.

The flyby mission would require two launches in quick succession. In the first liftoff, an SLS would loft four payloads to Earth orbit: an SLS upper-stage rocket; a 600-cubic-foot habitat module derived from Orbital Sciences’ Cygnus cargo vessel; a service module that would support the habitat module with power, propulsion and communications systems; and an Earth re-entry pod, which would be based on NASA’s Orion capsule.

The second launch — this one likely using a commercial rocket — would deliver the two astronauts to orbit aboard a yet-to-be-selected private spaceship. The crewmembers would then transfer to the habitat module, and the SLS upper stage would propel them on toward Mars.

The married couple would spend virtually the entire mission in the habitat module, transferring to the re-entry pod in the last few hours of the mission.

Inspiration Mars officials acknowledge that making all of this happen will be challenging. The re-entry pod, for example, will have to protect the astronauts from the blazing heat generated when it slams into Earth’s atmosphere at about 32,000 mph.

But it can be done, and the current plan — which emphasizes the use of technology already proven or in development whenever possible — gives the mission the best chance of success, Inspiration Mars officials say.

“We submit this report with unreserved faith in the men and women of NASA, with a singleminded commitment to surmounting every obstacle, and with complete confidence that this mission can be done,” they write in the report.

Advertisements

Leave a comment

Filed under Humor and Observations

Brightest explosion ever seen in the universe

Brightest explosion ever seen in the universe

By Denise Chow

Published November 22, 2013

  • brightest-gamma-ray-burst

    An unusually bright gamma-ray burst produced a jet that emerged at nearly the speed of light. (NASA/SWIFT/CRUZ DEWILDE)

  • gamma-ray-burst-swift-nasa

    A gamma-ray burst that exploded in April 2013 is the most luminous object in the field, as seen in this image from NASA’s Swift satellite. All the other objects seen in the image are stars from our own galaxy, while the gamma-ray burst is milli (NASA/SWIFT SATELLITE)

  • gamma-ray-burst-swift

    Close-up image of the brightest gamma-ray burst ever seen, taken in April 2013 by the ultraviolet/optical telescope on NASA’s Swift satellite. (NASA/SWIFT SATELLITE)

A mysterious blast of light spotted earlier this year near the constellation Leo was actually the brightest gamma-ray burst ever recorded, and was triggered by an extremely powerful stellar explosion, new research reports.

On April 27, several satellites — including NASA’s Swift satellite and Fermi Gamma-ray Space Telescope — observed an unusually bright burst of gamma radiation. The explosion unleashed an energetic jet of particles that traveled at nearly the speed of light, researchers said.

“We suddenly saw a gamma-ray burst that was extremely bright — a monster gamma-ray burst,” study co-author Daniele Malesani, an astrophysicist at the Niels Bohr Institute at the University of Copenhagen in Denmark, said in a statement. “This [was] one of the most powerful gamma-ray bursts we have ever observed with the Swift satellite.” [Top 10 Strangest Things in Space]

The gamma-ray burst was described in a series of studies published online Thursday in the journal Science.

‘The exploding matter was traveling at [nearly] the speed of light.’

– Giacomo Vianello, a postdoctoral scholar at Stanford University

Gamma-ray bursts, or GRBs, are the most powerful type of explosions in the universe and typically mark the destruction of a massive star. The original stars are too faint to be seen, but the supernova explosions that signal a star’s death throes can cause violent bursts of gamma radiation, researchers said.

Gamma-ray bursts are usually short but extremely bright. Still, ground-based telescopes have a tough time observing them because Earth’s atmosphere absorbs the gamma radiation.

The extremely bright gamma-ray burst seen earlier this year, officially dubbed GRB 130472A, occurred in a galaxy 3.6 billion light-years away from Earth, which, though still far away, is less than half the distance at which gamma-ray bursts have previously been seen. This closer proximity to Earth enabled astronomers to confirm for the first time that one object can simultaneously create a powerful GRB and a supernova explosion.

“We normally detect GRBs at great distance, meaning they usually appear quite faint,” study co-author Paul O’Brien, an astronomer at the University of Leicester in the United Kingdom, said in a statement. “In this case, the burst happened only a quarter of the way across the universe — meaning it was very bright. On this occasion, a powerful supernova was also produced — something we have not recorded before alongside a powerful GRB — and we will now be seeking to understand this occurrence.”

The jet produced by the gamma-ray burst was formed when a massive star collapsed on itself and created a black hole at its center. This generated a blast wave that caused the stellar remnants to expand, producing a glowing shell of debris that was observed as an extremely bright supernova explosion.

After analyzing properties of the light produced by the gamma-ray burst, scientists determined that the original star was only three to four times the size of the sun, but was 20 to 30 times more massive. This extremely compact star was also rapidly rotating, the researchers said.

The GRB was the brightest and most energetic ever witnessed and triggered dynamic internal and external shock waves that are still not well understood. Though scientists have a clearer view of the violent explosion, mysteries remain. For instance, space telescopes detected more photons and more high-energy gamma-rays than theoretical models predicted for a gamma-ray burst of this magnitude.

Researchers are still investigating why the energy levels seen with GRB 130472A do not quite match predictions from existing models of gamma-ray bursts. Their results could lead to more refined theories about how particles are accelerated, which could help astronomers better predict the behavior of cosmic events.

“The really cool thing about this GRB is that because the exploding matter was traveling at [nearly] the speed of light, we were able to observe relativistic shocks,” study co-author Giacomo Vianello, a postdoctoral scholar at Stanford University in California, said in a statement. “We cannot make a relativistic shock in the lab, so we really don’t know what happens in it, and this is one of the main unknown assumptions in the model. These observations challenge the models and can lead us to a better understanding of physics.”

Leave a comment

Filed under Humor and Observations

Lunar Craters Covering Moon’s Near Side Are Bigger Than Far Side

Lunar Craters Covering Moon’s Near Side Are Bigger Than Far Side Due To Hemisphere Differences

natureheader  |  By Davide CastelvecchiPosted: 11/08/2013 9:07 am EST  |  Updated: 11/08/2013 9:43 am EST

 
lunar craters

When the Soviet probe Luna 3 sent back the first shots of the dark side of the Moon, they showed that it was noticeably more pockmarked by craters than the near side. The nearside crust, by contrast, had more large, shallow basins. More than 50 years after those images first baffled researchers,a study published today in Science explains the observations.

Some theories suggest that the large basins on the near side were caused by impacts from asteroids bigger than those that caused the craters on the far side. But the latest study suggests that the observed basins do not accurately reflect the size of the initial impact, because as asteroids battered the lunar surface in the early history of the Solar System, the Moon’s warmer and softer nearside crust melted like butter, producing giant lava flows that filled the impact craters and transformed them into basins.

To improve on previous estimates of the size and distribution of basins, the team behind the study used data from NASA’s Gravity Recovery and Interior Laboratory mission (GRAIL), two satellites that since 2011 have been orbiting the Moon and mapping subtle variations in the strength of its gravitational field. Basins are characterized by thinner crust, says first author Katarina Miljković, a planetary scientist at the Paris Institute of Earth Physics. The team used GRAIL’s gravity mapsto find such thin crust and measure the true size of the basins.

“We didn’t have to look at topography nearly at all, just at the crust thickness,” says Miljković. The researchers found that although both sides of the Moon had the same total number of impact craters, the near side had eight basins larger than 320 kilometers in diameter, whereas the far side had only one.

 Hot hit

 The asteroid bombardment should have battered both sides equally, Miljković points out. The asymmetry could have arisen from comparatively small objects punching above their weight on the near side, producing basins more easily than on the far side.

Simulations showed that if the largest dark area on the near side — the plain of volcanic rock known as Oceanus Procellarum — was hundreds of degrees hotter than crust on the far side, impacts there would produce basins up to twice as large as impacts from similar-sized bodies on the far side (see video above).

And indeed, around 4 billion years ago, or 500 million years after the Moon formed, the near side could have been warmer than the far side. Researchers looking at the near side have detected the presence of radioactive isotopes; their decay would have heated up the rock, explains study co-author Maria Zuber, a planetary scientist at the Massachusetts Institute of Technology in Cambridge and principal investigator of GRAIL.

The findings fit well with the observations, but “there is no consensus” as to what caused the startling asymmetry in isotope content between the near side and the far side, says Jeffrey Taylor, a lunar scientist at the University of Hawaii in Honolulu. One leading theory posits that material rich in radioactive elements rose in a gigantic volcanic plume and formed a magma basin; another that it came from a collision with a sister moon around 1,000 kilometers in diameter.

William Bottke, a lunar scientist at the Southwest Research Institute in Boulder, Colorado, says that the work could lead researchers to revise just how dramatic asteroid bombardments were in the early Solar System. “This can be used to more accurately derive what the small-body populations were like four billion years ago.”

This story originally appeared in Nature News.

Leave a comment

Filed under Humor and Observations

Water Found on Mars!

H2 oh my: NASA’s Curiosity rover finds water in Mars dirt

By Mike Wall

Published September 26, 2013

  • curiosity-mosaic-sol-85

    SA’s Mars rover Curiosity is a mosaic of photos taken by the rover’s Mars Hand Lends Imager taken on Sol 85, the rover’s 85th Martian day, as Curiosity was sampling rocks at a stop dubbed Rocknest in Gale Crater. Image released Sept. 26, 2013.(NASA/JPL-CALTECH/MALIN SPACE SCIENCE SYSTEMS)

  • curiosity-rocknest-closeup

    At left, a closeup view of the Mars rock target Rocknest taken by the Curiosity rover showing its sandy surface and shadows that were disrupted by the rover’s front left wheel. At right, a view of Mars samples from Curiosity’s third dirt scoop (SCIENCE/AAAS)

  • curiosity-chemin-science-result

    This image depicts the science result from the Mars rover Curiosity’s CheMin instrument, showing an X-ray diffraction of the rover’s fifth scoop of Martian dirt. The black semi-circle at the bottom is the shadow of the beam stop. Image released(SCIENCE/AAAS)

Future Mars explorers may be able to get all the water they need out of the red dirt beneath their boots, a new study suggests.

NASA’s Mars rover Curiosity has found that surface soil on the Red Planet contains about 2 percent water by weight. That means astronaut pioneers could extract roughly 2 pints of water out of every cubic foot of Martian dirt they dig up, said study lead author Laurie Leshin, of Rensselaer Polytechnic Institute in Troy, N.Y.

“For me, that was a big ‘wow’ moment,” Leshin told SPACE.com. “I was really happy when we saw that there’s easily accessible water here in the dirt beneath your feet. And it’s probably true anywhere you go on Mars.” [The Search for Water on Mars (Photos)]

The new study is one of five papers published in the journal ScienceThursday that report what researchers have learned about Martian surface materials from the work Curiosity did during its first 100 days on the Red Planet.

Soaking up atmospheric water
C
uriosity touched down inside Mars’ huge Gale Crater in August 2012, kicking off a planned two-year surface mission to determine if the Red Planet could ever have supported microbial life. It achieved that goal in March, when it found that a spot near its landing site called Yellowknife Bay was indeed habitable billions of years ago.

‘The dirt is acting like a bit of a sponge and absorbing water from the atmosphere.’

– Laurie Leshin, of Rensselaer Polytechnic Institute 

But Curiosity did quite a bit of science work before getting to Yellowknife Bay. Leshin and her colleagues looked at the results of Curiosity’s first extensive Mars soil analyses, which the 1-ton rover performed on dirt that it scooped up at a sandy site called Rocknest in November 2012.

Using its Sample Analysis at Mars instrument, or SAM, Curiosity heated this dirt to a temperature of 1,535 degrees Fahrenheit, and then identified the gases that boiled off. SAM saw significant amounts of carbon dioxide, oxygen and sulfur compounds — and lots of water on Mars.

SAM also determined that the soil water is rich in deuterium, a “heavy” isotope of hydrogen that contains one neutron and one proton (as opposed to “normal” hydrogen atoms, which have no neutrons). The water in Mars’ thin air sports a similar deuterium ratio, Leshin said.

“That tells us that the dirt is acting like a bit of a sponge and absorbing water from the atmosphere,” she said.

Some bad news for manned exploration
SAM detected some organic compounds in the Rocknest sample as well — carbon-containing chemicals that are the building blocks of life here on Earth. But as mission scientists reported late last year, these are simple, chlorinated organics that likely have nothing to do with Martian life. [The Hunt for Martian Life: A Photo Timeline]

Instead, Leshin said, they were probably produced when organics that hitched a ride from Earth reacted with chlorine atoms released by a toxic chemical in the sample called perchlorate.

Perchlorate is known to exist in Martian dirt; NASA’s Phoenix lander spotted it near the planet’s north pole in 2008. Curiosity has now found evidence of it near the equator, suggesting that the chemical is common across the planet. (Indeed, observations by a variety of robotic Mars explorers indicate that Red Planet dirt is likely similar from place to place, distributed in a global layer across the surface, Leshin said.)

The presence of perchlorate is a challenge that architects of futuremanned Mars missions will have to overcome, Leshin said.

“Perchlorate is not good for people. We have to figure out, if humans are going to come into contact with the soil, how to deal with that,” she said.

“That’s the reason we send robotic explorers before we send humans — to try to really understand both the opportunities and the good stuff, and the challenges we need to work through,” Leshin added.

A wealth of discoveries
The four other papers published in Science today report exciting results as well.

For example, Curiosity’s laser-firing ChemCam instrument found a strong hydrogen signal in fine-grained Martian soils along the rover’s route, reinforcing the SAM data and further suggesting that water is common in dirt across the planet (since such fine soils are globally distributed).

Another study reveals more intriguing details about a rock Curiosity studied in October 2012. This stone — which scientists dubbed “Jake Matijevic” in honor of a mission team member who died two weeks after the rover touched down — is a type of volcanic rock never before seen on Mars.

However, rocks similar to Jake Matijevic are commonly observed here on Earth, especially on oceanic islands and in rifts where the planet’s crust is thinning out.

“Of all the Martian rocks, this one is the most Earth-like. It’s kind of amazing,” said Curiosity lead scientist John Grotzinger, a geologist at the California Institute of Technology in Pasadena. “What it indicates is that the planet is more evolved than we thought it was, more differentiated.”

The five new studies showcase the diversity and scientific value ofGale Crater, Grotzinger said. They also highlight how well Curiosity’s 10 science instruments have worked together, returning huge amounts of data that will keep the mission team busy for years to come.

“The amount of information that comes out of this rover just blows me away, all the time,” Grotzinger told SPACE.com. “We’re getting better at using Curiosity, and she just keeps telling us more and more. One year into the mission, we still feel like we’re drinking from a fire hose.”

The road to Mount Sharp
The pace of discovery could pick up even more. This past July, Curiosity left the Yellowknife Bay area and headed for Mount Sharp, which rises 3.4 miles into the Martian sky from Gale Crater’s center.

Mount Sharp has been Curiosity’s main destination since before the rover’s November 2011 launch. Mission scientists want the rover to climb up through the mountain’s foothills, reading the terrain’s many layers along the way.

“As we go through the rock layers, we’re basically looking at the history of ancient environments and how they may be changing,” Grotzinger said. “So what we’ll really be able to do for the first time is get a relative chronology of some substantial part of Martian history, which should be pretty cool.”

Curiosity has covered about 20 percent of the planned 5.3-mile trek to Mount Sharp. The rover, which is doing science work as it goes, may reach the base of the mountain around the middle of next year, Grotzinger said.

Leave a comment

Filed under Humor and Observations

Space-time loops may explain black holes

Space-time loops may explain black holes

Black holes can't fully be described by general relativity, but physicists hope to understand the inner workings of these strange objects by applying a theory called loop quantum gravity.

Black holes can’t fully be described by general relativity, but physicists hope to understand the inner workings of these strange objects by applying a theory called loop quantum gravity. / FELIPE ESQUIVEL REED

Physics cannot describe what happens inside a black hole. There, current theories break down, and general relativity collides with quantum mechanics, creating what’s called a singularity, or a point at which the equations spit out infinities.

But some advanced physics theories are trying to bridge the gap between general relativity and quantum mechanics, tounderstand what’s truly going on inside the densest objects in the universe. Recently, scientists applied a theory called loop quantum gravity to the case of black holes, and found that inside these objects, space and time may be extremely curved, but that gravity there is not infinite, as general relativity predicts.

This was the first time scientists have applied the full loop quantum gravity theory to black holes, and the results were encouraging, researchers said.

“What they have done is a major step, because they have been able to provide a much more complete description of what really happens near the black hole singularity using loop quantum gravity,” said Abhay Ashtekar, a physicist who studies loop quantum gravity at Pennsylvania State University, who was not involved in the new research.”We still don’t have a clear picture of the details of what happens. So it is opening a new door that other people will follow.” [Images: Black Holes of the Universe]

A black hole is created when a huge star runs out of fuel for nuclear fusion and collapses under its own gravity. The star’s outer layers are expelled, and its core falls in on itself, with the pull of gravity becoming ever stronger, until what’s left is the core’s mass condensed into an extremely small area. According to general relativity, this area is a single point of space-time, and the density there is infinitely large — a singularity.

But most scientists think singularities don’t really exist, that they’re just a sign that equations have broken down and fail to adequately describe reality. Loop quantum gravity appears to be an improvement on general relativity in describing black holes because it doesn’t produce a singularity.

The idea is based on the notion of “quantization,” which breaks an entity up into discrete pieces.Whilequantum mechanics says atoms exist in quantized, discrete states, loop quantum gravity posits that space-time itself is made of quantized, discrete bits, in the form of tiny, one-dimensional loops.

“The loop means the fundamental excitations of space-time themselves are one-dimensional in nature,” said Jorge Pullin, a physicist at Louisiana State University, who co-authored the new study with Rodolfo Gambini of the University of the Republic in Montevideo, Uruguay. “The fundamental building block is a loop, or network of loops. For a visual image, think of a mesh fabric.”

This way of portraying space-time changes fundamental physics, especially in extreme settingssuch as black holes or the Big Bang — which is thought to have birthed the universe. The Big Bang, like black holes, is indescribable under general relativity, understood only as a singularity.

“The subject really took off in 2005 when it was realized loop quantum gravity can naturally resolve the Big Bang singularity and that quantum space-time is much larger than what Einstein envisioned,” Ashtekar told SPACE.com.

Pullin and Gambini said their work is just a preliminary step, far from a full description of the true complexity of black holes.

“This model we’ve done is extremely simple,” Pullin said. Under their simplified model,”the black hole exists forever and doesn’t evolve. As a consequence I cannot tell you exactly what nature is going to do inside a black hole. It could be that the singularity gets replaced by a region that gets highly curved, but not infinitely curved. Or it could be that it just doesn’t make sense — you get a region which doesn’t behave like classical space-time. It would interact with particles in different ways than we normally think.”

Now that they’ve achieved this step, the researchers hope to advance their work by making the black holes in their model more dynamic and changeable.

“The black holes we studied were in empty space — there was no matter in them. They were pure space-time,” Pullin said.”We’re trying to add matter, because then it addsdynamics. We’re in the middle of that now.”

The study was published May 23 in the journal Physical Review Letters.

Leave a comment

Filed under Humor and Observations

Mysterious ‘Lorimer’ Waves From Another Galaxy Baffle Astronomers

Radio Bursts: Mysterious ‘Lorimer’ Waves From Another Galaxy Baffle Astronomers

The Huffington Post Canada  |  By  Posted: 07/08/2013 12:20 pm EDT  |  Updated: 07/08/2013 8:09 pm EDT

lorimer burst radio scope

It came from a galaxy far, far away.

A single, sudden burst of radio waves. And then it was gone.

The so-called ‘Lorimer’ burst was spotted in 2007 — and has been baffling scientists ever since.

“This is something that’s completely unprecedented,” Duncan Lorimer, the West Virginia University astrophysicist who made the discovery told Space at the time.

Today, the ‘burst’ is not alone. Indeed, four more identical flares have been observed,according to Popular Mechanics.

“You have to look at the sky for a very long time to find these,” British astrophysicist Dan Thornton, who observed the fresh, fleeting bursts, told the magazine. “The reason that we’re detecting them now is we’ve simply looked long enough.”

Thornton and his University of Manchester team published their findings in Science magazine, noting “the bursts’ properties indicate that they are of celestial rather than terrestrial origin.”

lorimer waves

The cause of the flares, which appear for only scant milliseconds, remains unknown. But researchers suggest an “explosive event” may be involved, as the bursts appear to be one-time events.

While the exact origins of the radio waves are also difficult to pinpoint in the vast expanse that is space, scientists are certain that the signals traveled a staggering distance.

Thornton suggests they took half the universe’s lifespan to get here. And, as Science News reports, they disappeared almost instantly upon arrival.

What may yet linger, however, is the wealth of data these flickering heralds bring.

Scientists say the bursts may shine light on the vast, previously unknown tracts of space that separate the galaxies.

“Staggeringly, we estimate there could be one of these flashes going off every ten seconds somewhere in the sky,” research team member Simon Johnston said in Global Times.

“With the ability to detect these very fast sources we are opening up a whole new area of astrophysics.”

Leave a comment

Filed under Humor and Observations

NASA Tests 3D Printed Rocket Engine Injector

NASA Successfully Tests First 3-D Printed Rocket Engine Injector

Another step toward the day when 3-D printers spit out entire spacecraft.
By Shaunacy FerroPosted 07.12.2013 at 1:00 pm3 Comments

Rocket Engine Injector NASA Glenn Research Center

We’ve seen 3-D printed aircraft and drone parts, and even plans for a printable private jet. Now NASA has demonstrated another 3-D printing first: The agency has just finished successful tests of a 3-D printed rocket engine injector at the Glenn Research Center in Cleveland, Ohio, marking one of the first steps in using additive manufacturing for space travel.

In conjunction with rocket manufacturer Aerojet Rocketdyne, NASA built the liquid-oxygen and gaseous-hydrogen rocket injector assembly using laser melting manufacturing. This sci-fi-sounding technique involves melting metallic powders down with high-powered laser beams, then fusing them into shape. Previous manufacturing methods for these type of injectors required more than a year. Being able to 3-D print the parts reduces the time frame to four months, at a 70 percent price reduction.

 

Installation In The Rocket Combustion Laboratory

Installation In The Rocket Combustion Laboratory:  NASA Glenn Research Center 

Eventually, 3-D printing is likely become a staple of the aerospace industry, as Davin Coburn describes in our July issue.

NASA has already expressed interest in putting 3-D printers in space, so astronauts could have easier access to spare parts and, most importantly, pizza.

Michael Gazarik, the associate administrator for space technology at NASA, even suggested entire spacecraft could one day be made with 3-D printing, calling it “game-changing for new mission opportunities.”

2 Comments

Filed under Humor and Observations